p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.1Q8, C4.10C42, (C2×C8).1C4, (C2×C4).9D4, C22.2(C4⋊C4), C4.18(C22⋊C4), (C2×M4(2)).5C2, (C22×C4).19C22, C2.3(C2.C42), (C2×C4).62(C2×C4), SmallGroup(64,19)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.10C42
G = < a,b,c | a4=1, b4=c4=a2, cbc-1=ab=ba, ac=ca >
Character table of C4.10C42
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | 1 | -1 | -1 | i | -i | -i | i | -i | -i | i | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | 1 | -1 | 1 | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | -i | -i | i | i | i | -i | -1 | -1 | 1 | 1 | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | -1 | 1 | 1 | -i | i | i | i | -i | -i | i | -1 | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | i | i | -i | 1 | 1 | -1 | -1 | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | 1 | -1 | 1 | i | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | -i | -i | i | 1 | 1 | -1 | -1 | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -1 | 1 | -1 | i | -i | i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | 1 | -1 | -1 | -i | i | i | -i | i | i | -i | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | -1 | 1 | -1 | -i | i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -1 | 1 | 1 | i | -i | -i | -i | i | i | -i | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | i | i | -i | -i | -i | i | -1 | -1 | 1 | 1 | -i | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 12 7 14 5 16 3 10)(2 15 4 13 6 11 8 9)
G:=sub<Sym(16)| (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12,7,14,5,16,3,10)(2,15,4,13,6,11,8,9)>;
G:=Group( (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12,7,14,5,16,3,10)(2,15,4,13,6,11,8,9) );
G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,12,7,14,5,16,3,10),(2,15,4,13,6,11,8,9)]])
G:=TransitiveGroup(16,108);
C4.10C42 is a maximal subgroup of
C23.SD16 C23.2SD16 (C2×C8).103D4 C8⋊C4⋊17C4 M4(2).46D4 M4(2).47D4 (C2×C8).2D4 C42.131D4 C24.Q8 M4(2).15D4 C24.11Q8 C22⋊C4.Q8 C23.SL2(𝔽3)
C4p.C42: C8.16C42 C12.21C42 C20.51C42 C20.25C42 C28.21C42 ...
C4.10C42 is a maximal quotient of
C42.20D4 C42.26D4 C24.2Q8 C20.25C42
(C2×C4).D4p: C42.27D4 C12.21C42 C20.51C42 C28.21C42 ...
Matrix representation of C4.10C42 ►in GL4(𝔽5) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
G:=sub<GL(4,GF(5))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[0,1,0,0,2,0,0,0,0,0,0,2,0,0,4,0],[0,0,1,0,0,0,0,1,3,0,0,0,0,2,0,0] >;
C4.10C42 in GAP, Magma, Sage, TeX
C_4._{10}C_4^2
% in TeX
G:=Group("C4.10C4^2");
// GroupNames label
G:=SmallGroup(64,19);
// by ID
G=gap.SmallGroup(64,19);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,158,489,117,1444,88]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^4=c^4=a^2,c*b*c^-1=a*b=b*a,a*c=c*a>;
// generators/relations
Export
Subgroup lattice of C4.10C42 in TeX
Character table of C4.10C42 in TeX